Масс-спектрометрия впервые была использована для анализа легкокипящих нефтяных фракций в 1940 г. После появления в 1959 г. масс-спектрометров высокого разрешения, обеспечивающих разделение углеводородных и гетероатомных ионов с близкими массами, и создания систем прямого ввода образца в ионный источник оказалось возможным использовать этот метод и для анализа средних и тяжелых нефтяных фракций. Современный этап развития масс-спектрометрии характеризуется разнообразием способов ионизации вещества, быстродействием, сочетанием с газовой хроматографией, полной автоматизацией эксперимента и обработкой результатов с помощью ЭВМ.
Масс-спектрометр содержит следующие основные узлы: источник ионов, в котором происходит ионизация молекул анализируемого вещества; анализатор, осуществляющий разделение ионов; систему ввода вещества в ионный источник; систему регистрации масс-спектра; систему откачки, обеспечивающую необходимый вакуум.
Исследуемую фракцию в газообразном состоянии из баллона напуска подают через молекулярный натекатель в камеру. Ионизация и диссоциация молекул исследуемых: веществ происходят в результате электронного удара. Поток ионизирующих электронов испускается накаленным катодом. Притягиваясь к аноду, электроны приобретают кинетическую энергию, достаточную для ионизации молекул. Образовавшиеся положительно заряженные ионы вытягиваются из зоны ионизации, формируются и ускоряются в электронно-оптической системе, состоящей из вытягивающей, фокусирующей и ускоряющей линз. Далее ионы движутся в магнитном поле -электромагнита по круговым траекториям, радиус кривизны которых зависит от отношения массы иона к его заряду (т/е). При соответствующей напряженности электрического и магнитного полей в щель коллектора 9 попадают ионы с определенным значением т/е. При изменении напряженности магнитного поля или ускоряющего потенциала и остальные ионы могут быть сфокусированы на щель коллектора. Ионы нейтрализуются на коллекторе и создают в его цепи ток, усиливаемый электрометрическим усилителем 10 и регистрируемый. Для записи массспектров используют электронные потенциометры.
Образование ионов, фокусировку ионного пучка и разделение ионов по массам осуществляют в условиях высокого вакуума, когда длины свободных пробегов ионов и молекул превышают размеры анализатора. Это дает возможность избежать вторичных соударений частиц, искажающих первоначальный состав и форму ионного пучка.
Могут использоваться и другие методы ионизации — химическая ионизация при столкновениях молекул анализируемого' вещества с ионами или метастабильными возбужденными атомами газа-реактанта (СН4, NH3 и др.); полевая ионизация в сильном неоднородном электрическом поле, создаваемом специальным электродом; лазерная десорбция и т. д. Однакоклассические методы ионизации электронным ударом при высоких (70 эВ) и низких (10—13 эВ) энергиях электронов остаются наиболее распространенными. Энергия электронов превышает потенциал ионизации углеводородов, составляющий для алканов 10—13, алкенов 9—10, алкилбензольных углеводородов 8,5—9,5, и полициклических аренов—менее 8 эВ. Поэтому при столкновении с электронами молекулы углеводородов ионизируются, т. е. происходит отрыв валентных электронов и образование молекулярных ионов М.
Молекулярный ион диссоциирует через состояние активированного комплекса, распад которого идет преимущественно в направлении образования стабильных продуктов. Ионизация молекул протекает быстро (за 10~15 с), а распад — сравнительно длительный акт продолжительностью 10~6—10~10 с. За этот промежуток времени избыточная энергия, полученная ионизированной молекулой от электрона (сверх потенциала ионизации, благоприятствующая передаче возбуждения, например система сопряженных связей, то избыточная энергия успевает равномерно распределиться по всей молекуле и степень диссоциации подобных соединений оказывается сравнительно небольшой. При отсутствии подобной системы избыточная энергия не успевает перераспределиться по всему молекулярному иону, на одной из наиболее слабых связей в окрестности атома с локализованным положительным зарядом оказывается энергия, достаточная для разрыва, и происходит диссоциация.
Устойчивость молекул к электронному удару характеризуется относительным количеством нераспавшихся молекулярных ИОНОВ n — количества молекулярных и осколочных ионов.
Структура образующихся ионов и их интенсивность находятся в качественной зависимости от строения молекул. Массы осколочных ионов, образующихся при диссоциативной ионизации, можно предсказать на основании структуры молекул. И наоборот, по массам образующихся осколочных ионов можно судить о том, какие структурные элементы входили в состав исследуемого соединения.
Влияние структурных особенностей молекул анализируемых соединений на направления распада молекулярного иона может быть охарактеризовано кривыми интенсивностей ионов по числу углеродных атомов. На рис. 6.6 в качестве примера приведены кривые распределения для гексадекана и 2-метилпентадекана. Кривая для гексадекана имеет максимум, соответствующий ионам C4HJ* , и далее происходит плавное уменьшение интенсивностей пиков вплоть до молекулярного иона. Возникновение любого максимума на этой кривой означает наличие заместителя в молекуле. Так, при метильной группе в положении 2 на кривой распределения появляется максимум, соответствующий ионам; в частности, при диссоциации 2-метилпентадекана максимум отмечается для ионов С13Н27, что объясняется меньшей энергией разрыва соответствующей связи С—С.
Молекулярные ионы алканов неустойчивы, причем алканы с разветвленной цепью еще менее устойчивы, чем н-алканы.Например, для тетрадекана и 2-метилтридекана значения WM равны 1,34 и 0,38%.
Циклоалканы несколько более устойчивы к электронному удару, чем алканы, причем шестичленные циклы стабильнее пятичленных, а бициклические алканы более стабильны, чем моноциклические. Пятичленные циклоалканы образуют интенсивный пик с массовым числом (М — 28)+ и менее интенсивный пик (М — 70)+, соответствующий отщеплению радикала и миграции водорода:
Ароматические углеводороды легко ионизируются, так как имеют низкие потенциалы ионизации, но распад молекулярных, ионов идет сравнительно слабее. Так, для бензола и для хризена наиболее вероятное направление распада алкилбензолов — по р-связи, которое сопровождается и миграцией водорода.
В масс-спектрах сложных смесей можно выделить групп» ионов (для алканов — пики ионов CnH2n+i для алкилбензолов и т. п.), определяющиеся некоторыми структурными фрагментами молекул. Совокупность групп ионов, на которые разбивается исходный масс-спектр, можно изобразить в виде линейчатого спектра, положение линий которого соответствует положениям центров групп, а высота линий — суммарным интенсивностям пиков ионов каждой группы. Представление масс-спектров сложных смесей в виде групповых масс-спектров позволяет проводить с ними операции, как со спектрами индивидуальных соединений.
В бензиновых фракциях методом масс-спектрометрии определяют содержание н-алканов и изоалканов, циклопентановых и циклогексановых углеводородов, алкилбензолов. В керосино-газойлевых и масляных фракциях определяют алканы, моно-, би- и трицикланы, алкилбензолы, инданы и тетралины, алкилнафталины, аценафтены и дифенилы, аценафтилены и флуорены, фенантрены и антрацены, бензотиофены. С помощью масс-спектрометрии можно оценивать такие структурные характеристики молекул, как степень конденсации колец, средняя длина заместителя, средняя степень замещения.
Алкены и циклоалканы образуют одинаковые характеристические пики, поэтому для их раздельного определения снимают масс-спектры двух образцов — исходного и после удаления алкенов обработкой серной кислотой.
Метод хромато-масс-спектрометрии — комбинирование газовой или жидкостной хроматографии, позволяющих разделять анализируемую фракцию на компоненты, с масс-спектрометрической идентификацией. Создание приборов типа Хромасс позволяет определять структуру индивидуальных компонентов нефти и их содержание.